Distinct Epigenetic Domains Separated by a CTCF Bound Insulator between the Tandem Genes, BLU and RASSF1A
نویسندگان
چکیده
BACKGROUND Tumor suppressor gene (TSG) RASSF1A and candidate TSG BLU are two tandem head-to-tail genes located at 3p21.3. We hypothesized that there may be a concordance on their gene expression and promoter methylation status. If not, then there may be an insulator located between RASSF1A and BLU genes that provides a barrier activity. METHODOLOGY/PRINCIPAL FINDINGS We first identified potential transcriptionally important CpG sites using the methylation-specific oligonucleotide array in relation to mRNA expression of RASSF1A and BLU genes in primary lung tumors. We demonstrated that E2F1 bound to the potential transcriptionally important CpG sites in RASSF1A gene of a normal lung cell line expressing RASSF1A transcripts, whereas loss of E2F1 binding to RASSF1A in A549 cancer cell line was the result of DNA methylation. Both RASSF1A and BLU genes had their own potential transcriptionally important CpG regions. However, there was no correlation of methylation status between RASSF1A and BLU. Using gel shift assay and chromatin immunoprecipitation-PCR (ChIP-PCR), we found that CCCTC-binding factor (CTCF) bound to insulator sequences located between these two genes. Bisulfite sequencing and ChIP-PCR revealed distinct methylation and chromatin boundaries separated by the CTCF binding domains in normal cells, whereas such distinct epigenetic domains were not observed in cancer cells. Note that demethylation reagent and histone deacetylase inhibitor treatments led to CTCF binding and recovery of barrier effect for RASSF1A and BLU genes in cancer cells. CONCLUSIONS/SIGNIFICANCE Our study dissects the potential transcriptionally important CpG sites for RASSF1A and BLU genes at the sequence level and demonstrates that CTCF binding to the insulator of BLU gene provides a barrier activity within separate epigenetic domains of the juxtaposed BLU and RASSF1A loci in the 3p21.3 gene cluster region.
منابع مشابه
CTCF Prevents the Epigenetic Drift of EBV Latency Promoter Qp
The establishment and maintenance of Epstein-Barr Virus (EBV) latent infection requires distinct viral gene expression programs. These gene expression programs, termed latency types, are determined largely by promoter selection, and controlled through the interplay between cell-type specific transcription factors, chromatin structure, and epigenetic modifications. We used a genome-wide chromati...
متن کاملThe macrosatellite DXZ4 mediates CTCF-dependent long-range intrachromosomal interactions on the human inactive X chromosome.
The human X-linked macrosatellite DXZ4 is a large tandem repeat located at Xq23 that is packaged into heterochromatin on the male X chromosome and female active X chromosome and, in response to X chromosome, inactivation is organized into euchromatin bound by the insulator protein CCCTC-binding factor (CTCF) on the inactive X chromosome (Xi). The purpose served by this unusual epigenetic regula...
متن کاملComparative Anatomy of Chromosomal Domains with Imprinted and Non-Imprinted Allele-Specific DNA Methylation
Allele-specific DNA methylation (ASM) is well studied in imprinted domains, but this type of epigenetic asymmetry is actually found more commonly at non-imprinted loci, where the ASM is dictated not by parent-of-origin but instead by the local haplotype. We identified loci with strong ASM in human tissues from methylation-sensitive SNP array data. Two index regions (bisulfite PCR amplicons), on...
متن کاملcHS4 insulator-mediated alleviation of promoter interference during cell-based expression of tandemly associated transgenes.
Expression of multiple transgenes in cells or whole organisms is a powerful tool for basic research of various biological functions and potentially for clinical applications such as gene therapy. As a model system for this purpose, multi-cDNA expression clones were constructed harboring two tandemly situated fluorescent protein cDNAs as reporter genes on a single plasmid. When 293 cells were tr...
متن کاملAssociation between HIC1 and RASSF1A Promoter Hypermethylation with MTHFD1 G1958A Polymorphism and Clinicopathological Features of Breast Cancer in Iranian Patients
Background: Ras-associated domain family 1 (RASSF1A) and hypermethylated in cancer (HIC1) genes are methylated more frequently in breast cancer. Genetic factors that alter the DNA methylation levels in normal and tumor tissues could therefore influence the susceptibility to this tumor phenotype. Objective: We determined the frequency of aberrant methylation of HIC1 and RASSF1A gene promoters an...
متن کامل